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Feedback/Errata
Summary of Feedback received after the presentation, for those who watch the video or saw the original talk.

● HDDs - Performance can be significantly affected by vibrations, particularly with many drives in a chassis
○ Use rubber mounts if provided, ensure screws are tight, etc.
○ Different HDDs may also handle this better, e.g. "NAS" rated drives versus desktop drives.
○ Video: Shouting in the Datacenter

● Reading from sparse/trimmed storage impossibly fast can help show max bandwidth of the storage path
○ Particularly for SAS/Fibre Channel
○ Not true for Ceph, as the RBD client generates the bytes on the hypervisor itself
○ Zoned / Shingled Magnetic Recording (SMR) HDDs also do this, not just Virtual Storage/SSDs

● Secure Erase on your NVMe drive can be useful
○ Warning: Erases all data from the drive, absolutely irreversibly. Perform with caution. Use nvme-cli.
○ Generally clears all of the internal wear levelling and block indirection metadata/state.
○ Helps reset performance to a simple state, has been known and seen by me to sometimes fix "bugs" / resolve 

fragmentation causing particularly bad performance. Good to do before starting each round of benchmarks.
● Hardware Bottlenecks Diagram

○ Add external FC/SAS enclosures and their link bandwidth to the Hardware Bottlenecks diagram
○ Pinning FIO to one CPU socket, same or different to the storage PCIe links may assist with testing the 

inter-socket bandwidth. Beware real workloads will add memory bandwidth to this link. Location of NIC can 
also impact network workloads.

● Add details on best practice configurations for FIO. A couple quick ones:
○ Biggest Note: Always use "--direct" for O_DIRECT/Direct IO when benchmarking devices, avoids host caching

■ However benchmarking without this flag can also be helpful to understand filesystem performance for 
non-O_DIRECT applications.

○ Test with a variety of block sizes, 4K tests are good for "IOPS" but will need larger sizes for max bandwidth. 
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https://www.youtube.com/watch?v=tDacjrSCeq4


Repeatable & Comparable
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Performance is not Simple
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5YouTube @bigbluebananabread https://www.youtube.com/shorts/mljraTiKYNY CC0

http://www.youtube.com/watch?v=mljraTiKYNY
https://www.youtube.com/shorts/mljraTiKYNY


6https://commons.wikimedia.org/wiki/File:Laserdisc_CAV.jpg CC-BY-SA-3.0

https://commons.wikimedia.org/wiki/File:Laserdisc_CAV.jpg
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https://www.reddit.com/r/LaserDisc/comments/jrewab/i_like_how_you_can_see_the_skewed_vertical/

https://www.reddit.com/r/LaserDisc/comments/jrewab/i_like_how_you_can_see_the_skewed_vertical/


8https://en.wikipedia.org/wiki/File:DiskStructure.svg

https://en.wikipedia.org/wiki/File:DiskStructure.svg


Performance is not Simple
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15Source: https://apac.kioxia.com/en-apac/business/ssd/client-ssd/xg6.html

https://apac.kioxia.com/en-apac/business/ssd/client-ssd/xg6.html


Performance is not Simple
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Bits-per-cell

17"NAND Levels" by David Gianluigi Refaldi https://commons.wikimedia.org/wiki/File:NAND_levels.png CC-BY-SA-4.0

Bits-per-cell States Read Time

SLC 1 1 25us

MLC 2 4 50us

TLC 3 8 100us

MLC 4 16 200us

https://commons.wikimedia.org/wiki/File:NAND_levels.png


Garbage Collection

18"Garbage Collection" by Music Sorter https://commons.wikimedia.org/wiki/File:Garbage_Collection.png CC-BY-SA-3.0

https://commons.wikimedia.org/wiki/File:Garbage_Collection.png
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Wear Level Management
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● Each individual cell has a limited number of program-erase cycles
● SSD firmware ensures each cell is written to evenly

○ Even if we write a full erase-block stripe, can't just rewrite the same 
block



Overprovisioning

21https://download.semiconductor.samsung.com/resources/white-paper/S190311-SAMSUNG-Memory-Over-Provisioning-White-paper.pdf

https://download.semiconductor.samsung.com/resources/white-paper/S190311-SAMSUNG-Memory-Over-Provisioning-White-paper.pdf


USE Method

Utilisation

Saturation

Error Counters

More: https://www.brendangregg.com/usemethod.html
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https://www.brendangregg.com/usemethod.html


Hardware Bottlenecks
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DDR4 2400MHz Quad-Channel (76.8GB/s)

CPU #1

SAS HBA

HDD HDD HDD

PCIe 3.0 x8 (8GB/s)

DRAM Memory

SATA 6Gb/s (600MB/s)

CPU Intersocket
Varies: 40-200GB/s

NVMe

PCIe 3.0 x4 (4GB/s)

CPU #2

NIC

PCIe 3.0 x4 (4GB/s)

Network 
Switch

DRAM Memory

4x 10Gb/s (1-4GB/s)
LACP (Layer2, or 3+4?)



Software Bottlenecks

● Saturating a single CPU core (or all of them)
○ Kernel
○ Benchmark Client

● Saturating device queues
○ Hardware

■ Enterprise hardware often supports more queues
■ Some hardware requires more queues enabled in the BIOS
■ Some consumer hardware may only support 1 queue

○ Virtual
■ virtio multi-queue (Block and NIC devices)Benchmark client - 

Queues Counts
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top

top - 00:12:14 up 1 day, 19:14,  4 users,  load average: 1.26, 0.80, 0.90
Tasks: 869 total,   3 running, 866 sleeping,   0 stopped,   0 zombie

%Cpu(s):  0.2 us,  6.0 sy,  0.0 ni, 92.7 id,  1.0 wa,  0.0 hi,  0.0 si,  0.0 st

MiB Mem : 128773.1 total,    481.3 free,  31294.7 used,  96997.2 buff/cache
MiB Swap:   8192.0 total,   8191.5 free,      0.5 used.  96423.9 avail Mem 

    PID USER      PR  NI    VIRT    RES    SHR S  %CPU  %MEM     TIME+ COMMAND                                                                        
 775088 root      20   0  218464   7748   2056 R  99.7   0.0   0:25.91 fio 



top

top - 00:12:14 up 1 day, 19:14,  4 users,  load average: 1.26, 0.80, 0.90
Tasks: 869 total,   3 running, 866 sleeping,   0 stopped,   0 zombie

%Cpu0  :  0.0 us,  0.7 sy,  0.0 ni, 98.7 id,  0.3 wa,  0.0 hi,  0.3 si,  0.0 st
%Cpu1  :  0.0 us, 47.9 sy,  0.0 ni, 22.9 id, 29.2 wa,  0.0 hi,  0.0 si,  0.0 st
%Cpu2  :  0.0 us,  0.0 sy,  0.0 ni,100.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
%Cpu3  :  6.3 us, 93.7 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
%Cpu4  :  0.0 us,  0.0 sy,  0.0 ni,100.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
%Cpu5  :  0.0 us,  0.0 sy,  0.0 ni,100.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
%Cpu6  :  0.0 us,  0.0 sy,  0.0 ni,100.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
...
%Cpu31 :  0.0 us,  0.0 sy,  0.0 ni,100.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st

    PID USER      PR  NI    VIRT    RES    SHR S  %CPU  %MEM     TIME+ COMMAND                                                                        
 775088 root      20   0  218464   7748   2056 R  99.7   0.0   0:25.91 fio 
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Device Queues - MicroMirror Project

28https://fosstodon.org/@lathiat/110228551076334949

https://fosstodon.org/@lathiat/110228551076334949


Device Queues - MicroMirror Project

29https://fosstodon.org/@lathiat/110228551076334949

https://fosstodon.org/@lathiat/110228551076334949


Receive/Transmit Packet Steering (CPU Mask)

echo f > /sys/class/net/IFACE/rx-0/rps_cpus

echo f > /sys/class/net/IFACE/rx-0/xps_cpus
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Device Queues - MicroMirror Project

31https://fosstodon.org/@lathiat/110228551076334949

https://fosstodon.org/@lathiat/110228551076334949


Device Queues - MicroMirror Project

32https://fosstodon.org/@lathiat/110228551076334949

https://fosstodon.org/@lathiat/110228551076334949


Device Queues - Cisco UCS Ceph Cluster

33https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html

$ grep eth5 /proc/interrupts 
eth5-rx-0
eth5-tx-0
eth5-err
eth5-notify

https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html


Device Queues - Cisco UCS Ceph Cluster

34https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html

$ grep enp6s0 /proc/interrupts 
enp6s0-rx-0
enp6s0-tx-0
enp6s0-err
enp6s0-notify

https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html


Device Queues - Cisco UCS Ceph Cluster

35https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html

https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html


Less known USE Tools
Find new tools
sosreport
https://www.brendangregg.com/USEmethod/use-rosetta.html

Non-hardware statistics
sar
dstat

Physical Hardware Layout / Link Speeds
lstopo --of ascii
lspci -vv

Network Errors
netstat -s
ethtool -S 
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https://www.brendangregg.com/USEmethod/use-rosetta.html


Read-Modify-Write

● Various layers have a minimum write size which varies
● Any smaller write must first read the rest of it, modify it, then write it back
● Causes

○ Checksums/ECC/Parity (HDDs, RAID5, ZFS)
○ Compression (ZFS)
○ Snapshots (LVM, Virtual Disks, ZFS)

● Trap: Partition Alignment
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Read-Modify-Write

● Hard Disks - Hidden CRC
○ Traditionally: 512B: Smaller writes rejected
○ Most modern drives: 4096B (4KiB)

■ 512e emulation: Transparent Read-Modify-Write
■ 4Kn native mode: Smaller writes rejected

● Linux Page Cache - 4KiB
○ All writes go to the page cache unless bypassed
○ Small writes will read the rest of the 4KiB block before returning

■ Even for non-blocking/asynchronous I/O!
● ZFS - Checksums, Compression, Snapshots

○ Files: Dynamic per-file based on the size of the first write
■ Minimum: ashift, 8=512KiB, 12=4KiB, 13=8KiB
■ Maximum: recordsize (Default: 128KiB)

○ zvol: Fixed at volblocksize - default 16KiB
● Ceph - 4KiB for Checksums, 16-64KiB for Compression
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Read-Modify-Write: Non-4K aligned writes

● Non-4K aligned writes
○ Linux Guests: Always fine
○ Windows Guests: Will write 512-byte aligned by default

■ Unless virtual disk has physical_block_size=4096 hint (usually doesn't)
■ Ceph intentionally does not cache data even briefly. This will happen 

even if you read and immediately write the data.
○ Fixing I/O performance for Windows guests in OpenStack Ceph clouds: 

https://www.youtube.com/watch?v=_vfGcsvnn6U
● Mis-informed etcd fio test

○ https://www.ibm.com/cloud/blog/using-fio-to-tell-whether-your-storage-is-fast-enough-for-etcd (now removed)
○ fio --rw=write --ioengine=sync --fdatasync=1 --size=22m --bs=2300 --name=mytest1
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https://www.youtube.com/watch?v=_vfGcsvnn6U
https://www.ibm.com/cloud/blog/using-fio-to-tell-whether-your-storage-is-fast-enough-for-etcd


Sparse Allocation / Thin Provisioning

● Writes
○ Penalty typically incurred when you first write to an area of a disk

● Reads
○ Impossibly fast to read all-zero data that isn't actually on-disk

● Discard/Trim may happen at random, sparse-ifying your thick provision
○ Many things are nervous to trim

■ Many early implementations performed badly, wouldn't queue or 
corrupted data

○ By default most Linux FS don't trim on the fly
○ But fstrim is scheduled weekly
○ LUKS encryption disables trim by default to prevent information-leak
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Working Set Size

● Write a realistic total amount of data to each drive/the entire cluster
● Issue reads and writes to a realistic percentage of the total storage

○ fio
■ --io_size
■ zipf distribution
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Why? Caching

● Ensures cache hit rates approximate what you'll see in production
● Small benchmarks (10s of GB) often fit in every possible cache

○ Memory caching
■ Metadata: indirect block allocation maps
■ Data itself

○ SSD Caching (bcache, lvmcache, storage tiering, etc)
■ May not trigger writeback
■ May never read/write to the actual backing HDD
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Benchmarking Workload

● Tool Selection
○ Bad: hdparm, dd, cp, rados bench
○ Good: fio (with the right config)

● Parallelism
○ Parallel I/O submission
○ Multiple VMs on Multiple Hosts

■ Multiple Client IPs, MACs
■ Multiple Network Links

● Filesystem vs Raw Block
○ ext4 inode table lazy initialization
○ Metadata Overheads
○ Lock Contention
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Ceph Specifics

● Thin Provisioning-type behaviour
○ RBD images are thin provisioned by default
○ Space for both metadata & data is thin provisioned within the OSD itself

● Per-client concurrency limits, eg. objecter_inflight_ops, objecter_inflight
● Periodic RocksDB compaction
● Working Set Size

○ Deep Scrub reads the entire dataset once a week
○ 8TB / 1 week = 13MB/s
○ Significant background load
○ Each 4MB of an RBD = 1 object = 1 PG = 1 OSD

● Dynamic scaling - will impact benchmarks, especially right after deploy/creation
○ PG Autoscaler
○ PG Balancer
○ RadosGW Bucket Sharding

● Erasure Coding = worst case Read-Modify-Write with network latency
44



"Tuning"

● Always question & validate tuning guides
○ Many tune all sorts of crazy values
○ Usually aiming to achieve some maximum throughput for marketing
○ Almost always at the expense of latency and crash safety
○ A bigger buffer value is not always faster
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"Tuning"

● Don't assume changing a config option dynamically actually works
○ You may need to re-connect the TCP connection

■ Examples: net.ipv4.{tcp_rmem,tcp_wmem}
○ You may need to re-create the storage file

■ Examples: zfs compression, recordsize
○ You may need to restart the OSD
○ You may need to stop/start the VM
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Simple guidelines
● Benchmark raw block device instead of a filesystem
● Pre-condition/pre-write the entire virtual disk size at the start

○ Eliminates any thin provisioning overhead or speedups
● Fill the underlying storage to a reasonable percentage (60-80%)

○ Minimises variance from SSD SLC-caching/Garbage Collection
○ Reproduce production deep-scrub impact in Ceph
○ Avoid filling filesystems above 90% to avoid abnormal fragmentation

● Working Set Size
○ Avoid writing to only a small portion of a virtual disk
○ Write to the disk at random or use a distribution like zipf
○ Benchmark a range of sizes and watch the effect

● Benchmark duration
○ Benchmark long enough to push any SSDs past the bi-modal speed 

cut-off
● Switch back and forth between the two compared options

○ Ensure the performance change is repeatable in both directions
● Research and determine the limiting factor, improve it, try again
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Why do we need to do all of these things when we don't actually do them 
for the production workloads?
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Questions

lathiat.net/talks
twitter.com/lathiat
@lathiat@fosstodon.org
linkedin.com/in/lathiat

trent.lloyd@canonical.com


