
1

Storage
Benchmarking
Repeatable & Comparable

Trent Lloyd
Sustaining Engineering @ Canonical (Ubuntu)
@lathiat@fosstodon.org

mailto:lathiat@fosstodon.org

Feedback/Errata
Summary of Feedback received after the presentation, for those who watch the video or saw the original talk.

● HDDs - Performance can be significantly affected by vibrations, particularly with many drives in a chassis
○ Use rubber mounts if provided, ensure screws are tight, etc.
○ Different HDDs may also handle this better, e.g. "NAS" rated drives versus desktop drives.
○ Video: Shouting in the Datacenter

● Reading from sparse/trimmed storage impossibly fast can help show max bandwidth of the storage path
○ Particularly for SAS/Fibre Channel
○ Not true for Ceph, as the RBD client generates the bytes on the hypervisor itself
○ Zoned / Shingled Magnetic Recording (SMR) HDDs also do this, not just Virtual Storage/SSDs

● Secure Erase on your NVMe drive can be useful
○ Warning: Erases all data from the drive, absolutely irreversibly. Perform with caution. Use nvme-cli.
○ Generally clears all of the internal wear levelling and block indirection metadata/state.
○ Helps reset performance to a simple state, has been known and seen by me to sometimes fix "bugs" / resolve

fragmentation causing particularly bad performance. Good to do before starting each round of benchmarks.
● Hardware Bottlenecks Diagram

○ Add external FC/SAS enclosures and their link bandwidth to the Hardware Bottlenecks diagram
○ Pinning FIO to one CPU socket, same or different to the storage PCIe links may assist with testing the

inter-socket bandwidth. Beware real workloads will add memory bandwidth to this link. Location of NIC can
also impact network workloads.

● Add details on best practice configurations for FIO. A couple quick ones:
○ Biggest Note: Always use "--direct" for O_DIRECT/Direct IO when benchmarking devices, avoids host caching

■ However benchmarking without this flag can also be helpful to understand filesystem performance for
non-O_DIRECT applications.

○ Test with a variety of block sizes, 4K tests are good for "IOPS" but will need larger sizes for max bandwidth.
2

https://www.youtube.com/watch?v=tDacjrSCeq4

Repeatable & Comparable

3

Performance is not Simple

4

5YouTube @bigbluebananabread https://www.youtube.com/shorts/mljraTiKYNY CC0

http://www.youtube.com/watch?v=mljraTiKYNY
https://www.youtube.com/shorts/mljraTiKYNY

6https://commons.wikimedia.org/wiki/File:Laserdisc_CAV.jpg CC-BY-SA-3.0

https://commons.wikimedia.org/wiki/File:Laserdisc_CAV.jpg

7
https://www.reddit.com/r/LaserDisc/comments/jrewab/i_like_how_you_can_see_the_skewed_vertical/

https://www.reddit.com/r/LaserDisc/comments/jrewab/i_like_how_you_can_see_the_skewed_vertical/

8https://en.wikipedia.org/wiki/File:DiskStructure.svg

https://en.wikipedia.org/wiki/File:DiskStructure.svg

Performance is not Simple

9

10

11

12

13

14

15Source: https://apac.kioxia.com/en-apac/business/ssd/client-ssd/xg6.html

https://apac.kioxia.com/en-apac/business/ssd/client-ssd/xg6.html

Performance is not Simple

16

Bits-per-cell

17"NAND Levels" by David Gianluigi Refaldi https://commons.wikimedia.org/wiki/File:NAND_levels.png CC-BY-SA-4.0

Bits-per-cell States Read Time

SLC 1 1 25us

MLC 2 4 50us

TLC 3 8 100us

MLC 4 16 200us

https://commons.wikimedia.org/wiki/File:NAND_levels.png

Garbage Collection

18"Garbage Collection" by Music Sorter https://commons.wikimedia.org/wiki/File:Garbage_Collection.png CC-BY-SA-3.0

https://commons.wikimedia.org/wiki/File:Garbage_Collection.png

19

Wear Level Management

20

● Each individual cell has a limited number of program-erase cycles
● SSD firmware ensures each cell is written to evenly

○ Even if we write a full erase-block stripe, can't just rewrite the same
block

Overprovisioning

21https://download.semiconductor.samsung.com/resources/white-paper/S190311-SAMSUNG-Memory-Over-Provisioning-White-paper.pdf

https://download.semiconductor.samsung.com/resources/white-paper/S190311-SAMSUNG-Memory-Over-Provisioning-White-paper.pdf

USE Method

Utilisation

Saturation

Error Counters

More: https://www.brendangregg.com/usemethod.html

22

https://www.brendangregg.com/usemethod.html

Hardware Bottlenecks

23

DDR4 2400MHz Quad-Channel (76.8GB/s)

CPU #1

SAS HBA

HDD HDD HDD

PCIe 3.0 x8 (8GB/s)

DRAM Memory

SATA 6Gb/s (600MB/s)

CPU Intersocket
Varies: 40-200GB/s

NVMe

PCIe 3.0 x4 (4GB/s)

CPU #2

NIC

PCIe 3.0 x4 (4GB/s)

Network
Switch

DRAM Memory

4x 10Gb/s (1-4GB/s)
LACP (Layer2, or 3+4?)

Software Bottlenecks

● Saturating a single CPU core (or all of them)
○ Kernel
○ Benchmark Client

● Saturating device queues
○ Hardware

■ Enterprise hardware often supports more queues
■ Some hardware requires more queues enabled in the BIOS
■ Some consumer hardware may only support 1 queue

○ Virtual
■ virtio multi-queue (Block and NIC devices)Benchmark client -

Queues Counts

24

top

top - 00:12:14 up 1 day, 19:14, 4 users, load average: 1.26, 0.80, 0.90
Tasks: 869 total, 3 running, 866 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.2 us, 6.0 sy, 0.0 ni, 92.7 id, 1.0 wa, 0.0 hi, 0.0 si, 0.0 st

MiB Mem : 128773.1 total, 481.3 free, 31294.7 used, 96997.2 buff/cache
MiB Swap: 8192.0 total, 8191.5 free, 0.5 used. 96423.9 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 775088 root 20 0 218464 7748 2056 R 99.7 0.0 0:25.91 fio

top

top - 00:12:14 up 1 day, 19:14, 4 users, load average: 1.26, 0.80, 0.90
Tasks: 869 total, 3 running, 866 sleeping, 0 stopped, 0 zombie

%Cpu0 : 0.0 us, 0.7 sy, 0.0 ni, 98.7 id, 0.3 wa, 0.0 hi, 0.3 si, 0.0 st
%Cpu1 : 0.0 us, 47.9 sy, 0.0 ni, 22.9 id, 29.2 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 : 6.3 us, 93.7 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu4 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu5 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu6 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
...
%Cpu31 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 775088 root 20 0 218464 7748 2056 R 99.7 0.0 0:25.91 fio

27

Device Queues - MicroMirror Project

28https://fosstodon.org/@lathiat/110228551076334949

https://fosstodon.org/@lathiat/110228551076334949

Device Queues - MicroMirror Project

29https://fosstodon.org/@lathiat/110228551076334949

https://fosstodon.org/@lathiat/110228551076334949

Receive/Transmit Packet Steering (CPU Mask)

echo f > /sys/class/net/IFACE/rx-0/rps_cpus

echo f > /sys/class/net/IFACE/rx-0/xps_cpus

30

Device Queues - MicroMirror Project

31https://fosstodon.org/@lathiat/110228551076334949

https://fosstodon.org/@lathiat/110228551076334949

Device Queues - MicroMirror Project

32https://fosstodon.org/@lathiat/110228551076334949

https://fosstodon.org/@lathiat/110228551076334949

Device Queues - Cisco UCS Ceph Cluster

33https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html

$ grep eth5 /proc/interrupts
eth5-rx-0
eth5-tx-0
eth5-err
eth5-notify

https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html

Device Queues - Cisco UCS Ceph Cluster

34https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html

$ grep enp6s0 /proc/interrupts
enp6s0-rx-0
enp6s0-tx-0
enp6s0-err
enp6s0-notify

https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html

Device Queues - Cisco UCS Ceph Cluster

35https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html

https://toreanderson.github.io/2015/10/08/cisco-ucs-multi-queue-nics-and-rss.html

Less known USE Tools
Find new tools
sosreport
https://www.brendangregg.com/USEmethod/use-rosetta.html

Non-hardware statistics
sar
dstat

Physical Hardware Layout / Link Speeds
lstopo --of ascii
lspci -vv

Network Errors
netstat -s
ethtool -S

36

https://www.brendangregg.com/USEmethod/use-rosetta.html

Read-Modify-Write

● Various layers have a minimum write size which varies
● Any smaller write must first read the rest of it, modify it, then write it back
● Causes

○ Checksums/ECC/Parity (HDDs, RAID5, ZFS)
○ Compression (ZFS)
○ Snapshots (LVM, Virtual Disks, ZFS)

● Trap: Partition Alignment

37

Read-Modify-Write

● Hard Disks - Hidden CRC
○ Traditionally: 512B: Smaller writes rejected
○ Most modern drives: 4096B (4KiB)

■ 512e emulation: Transparent Read-Modify-Write
■ 4Kn native mode: Smaller writes rejected

● Linux Page Cache - 4KiB
○ All writes go to the page cache unless bypassed
○ Small writes will read the rest of the 4KiB block before returning

■ Even for non-blocking/asynchronous I/O!
● ZFS - Checksums, Compression, Snapshots

○ Files: Dynamic per-file based on the size of the first write
■ Minimum: ashift, 8=512KiB, 12=4KiB, 13=8KiB
■ Maximum: recordsize (Default: 128KiB)

○ zvol: Fixed at volblocksize - default 16KiB
● Ceph - 4KiB for Checksums, 16-64KiB for Compression

38

Read-Modify-Write: Non-4K aligned writes

● Non-4K aligned writes
○ Linux Guests: Always fine
○ Windows Guests: Will write 512-byte aligned by default

■ Unless virtual disk has physical_block_size=4096 hint (usually doesn't)
■ Ceph intentionally does not cache data even briefly. This will happen

even if you read and immediately write the data.
○ Fixing I/O performance for Windows guests in OpenStack Ceph clouds:

https://www.youtube.com/watch?v=_vfGcsvnn6U
● Mis-informed etcd fio test

○ https://www.ibm.com/cloud/blog/using-fio-to-tell-whether-your-storage-is-fast-enough-for-etcd (now removed)
○ fio --rw=write --ioengine=sync --fdatasync=1 --size=22m --bs=2300 --name=mytest1

39

https://www.youtube.com/watch?v=_vfGcsvnn6U
https://www.ibm.com/cloud/blog/using-fio-to-tell-whether-your-storage-is-fast-enough-for-etcd

Sparse Allocation / Thin Provisioning

● Writes
○ Penalty typically incurred when you first write to an area of a disk

● Reads
○ Impossibly fast to read all-zero data that isn't actually on-disk

● Discard/Trim may happen at random, sparse-ifying your thick provision
○ Many things are nervous to trim

■ Many early implementations performed badly, wouldn't queue or
corrupted data

○ By default most Linux FS don't trim on the fly
○ But fstrim is scheduled weekly
○ LUKS encryption disables trim by default to prevent information-leak

40

Working Set Size

● Write a realistic total amount of data to each drive/the entire cluster
● Issue reads and writes to a realistic percentage of the total storage

○ fio
■ --io_size
■ zipf distribution

41

Why? Caching

● Ensures cache hit rates approximate what you'll see in production
● Small benchmarks (10s of GB) often fit in every possible cache

○ Memory caching
■ Metadata: indirect block allocation maps
■ Data itself

○ SSD Caching (bcache, lvmcache, storage tiering, etc)
■ May not trigger writeback
■ May never read/write to the actual backing HDD

42

Benchmarking Workload

● Tool Selection
○ Bad: hdparm, dd, cp, rados bench
○ Good: fio (with the right config)

● Parallelism
○ Parallel I/O submission
○ Multiple VMs on Multiple Hosts

■ Multiple Client IPs, MACs
■ Multiple Network Links

● Filesystem vs Raw Block
○ ext4 inode table lazy initialization
○ Metadata Overheads
○ Lock Contention

43

Ceph Specifics

● Thin Provisioning-type behaviour
○ RBD images are thin provisioned by default
○ Space for both metadata & data is thin provisioned within the OSD itself

● Per-client concurrency limits, eg. objecter_inflight_ops, objecter_inflight
● Periodic RocksDB compaction
● Working Set Size

○ Deep Scrub reads the entire dataset once a week
○ 8TB / 1 week = 13MB/s
○ Significant background load
○ Each 4MB of an RBD = 1 object = 1 PG = 1 OSD

● Dynamic scaling - will impact benchmarks, especially right after deploy/creation
○ PG Autoscaler
○ PG Balancer
○ RadosGW Bucket Sharding

● Erasure Coding = worst case Read-Modify-Write with network latency
44

"Tuning"

● Always question & validate tuning guides
○ Many tune all sorts of crazy values
○ Usually aiming to achieve some maximum throughput for marketing
○ Almost always at the expense of latency and crash safety
○ A bigger buffer value is not always faster

45

"Tuning"

● Don't assume changing a config option dynamically actually works
○ You may need to re-connect the TCP connection

■ Examples: net.ipv4.{tcp_rmem,tcp_wmem}
○ You may need to re-create the storage file

■ Examples: zfs compression, recordsize
○ You may need to restart the OSD
○ You may need to stop/start the VM

46

Simple guidelines
● Benchmark raw block device instead of a filesystem
● Pre-condition/pre-write the entire virtual disk size at the start

○ Eliminates any thin provisioning overhead or speedups
● Fill the underlying storage to a reasonable percentage (60-80%)

○ Minimises variance from SSD SLC-caching/Garbage Collection
○ Reproduce production deep-scrub impact in Ceph
○ Avoid filling filesystems above 90% to avoid abnormal fragmentation

● Working Set Size
○ Avoid writing to only a small portion of a virtual disk
○ Write to the disk at random or use a distribution like zipf
○ Benchmark a range of sizes and watch the effect

● Benchmark duration
○ Benchmark long enough to push any SSDs past the bi-modal speed

cut-off
● Switch back and forth between the two compared options

○ Ensure the performance change is repeatable in both directions
● Research and determine the limiting factor, improve it, try again

47

Why do we need to do all of these things when we don't actually do them
for the production workloads?

48

Questions

lathiat.net/talks
twitter.com/lathiat
@lathiat@fosstodon.org
linkedin.com/in/lathiat

trent.lloyd@canonical.com

